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Unsteady lifting-line theory is developed for a wing of large aspect ratio oscillating 
at low frequency in inviscid incompressible flow. The wing is assumed to have a rigid 
chord but a flexible span. Use of the method of matched asymptotic expansions 
reduces the problem from a singular integral equation to quadrature. The pressure 
field and airloads, for a prescribed wing shape and motion, are obtained in closed form 
as expansions in inverse aspect ratio. A rigorous definition of unsteady induced 
downwash is also obtained. Numerical calculations are presented for an elliptic wing 
in pitch and heave; compared with numerical lifting-surface theory, computation 
time is reduced significantly. The present work also identifies and resolves errors in 
the unsteady lifting-line theory of James (1975), and points out a limitation in that 
of Van Holten (1975, 1976, 1977). 

1. Introduction 
Important unsteady and three-dimensional effects occur for a wide range of 

problems of practical interest involving oscillating flexible wings of large aspect ratio. 
Many of these effects cannot be predicted accurately by strip-theory or quaai-steady 
aerodynamics. The cost of numerical implementation of current unsteady lifting- 
surface theory, the non-analytic nature of the results, and the success of Prandtl’s 
lifting-line theory for steady flow have prompted several recent investigations that 
extend the concepts of lifting-line theory to unsteady flows. These studies have 
employed the method of matched asymptotic expansions (as, for steady flow, did Van 
Dyke 1963), and have been termed ‘unsteady lifting-line theory ’. Unfortunately, 
some of the existing unsteady lifting-line theories (for incompressible flow) are 
incomplete or incorrect, as can be seen from the following discussion. 

The unsteady lifting-line theory of James (1975), for a straight flexible wing in 
general unsteady motion, is based on a semi-intuitive matched asymptotic expansions 
(MAE) approach. The present work shows that his unsteady induced downwash 
contains an unremoved logarithmic singularity and is thus infinite, so that his 
three-dimensional results are incorrect. Although the theory is said to be valid for 
all reduced frequencies, at several points the formulation assumes low reduced 
frequencies. He also assumes an inner solution for the acceleration potential O(A-l ) ,  
whereas, because of the independence of scale in inviscid flows, it must be O(1). The 
inner solution also lacks the eigensolutions arising from the lack of boundary 
conditions at infinity on the scale of the inner region. Furthermore, this work does 
not treat and resolve the inherent non-uniqueness of the solution in the acceleration 
potential formulation of the problem. These problems are resolved in the present 
paper- 
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Van Holten (1975, 1976, 1977) has developed lifting-line theories for a rigid 
rectangular wing in uniform motion, with and without yaw and harmonic pitching 
motion, and also as a helicopter rotor blade in forward flight. Van Holten, like James, 
assumes that induced downwash is constant across the chord. It is shown in the 
present work that this is true only for the lowest-order lifting-line theory for small 
reduced frequencies, while, as was first pointed out by Reissner (1944), for a 
harmonically oscillating wing, induced downwash has a sinusoidal variation across 
the chord. Also, the second-order steady lifting-line theory of Van Dyke (1963) shows 
that to second order steady induced downwash varies linearly across the chord. Van 
Holten also regards his work as valid for all reduced frequencies, whereas his 
formulation, like that of James, is limited to low reduced frequencies. 

Van Holten (1976) was the first to point out the correct interpretation of induced 
downwash in steady and unsteady flows. The same interpretation comes out of the 
present work. 

The unsteady lifting-line theory of Cheng (1975) treats a wing with curved and 
swept planform in harmonic oscillation. This work is incomplete in that it does not 
include calculation of the aerodynamic loads, unsteady induced downwash for the 
low-frequency domain, and an element of the inner solution (particular solution for 
the non-homogeneous trailing-vortex-sheet boundary condition). These problems, 
however, have been resolved in later works (see e.g. Murillo 1979; Cheng & Murillo 
1984). 

The problem of a harmonically oscillating finite wing involves three characteristic 
lengthscales: chord c, span b and wavelength A = 2xU/w of the periodic wake, where 
U is the free-stream velocity and o is the radian frequency of oscillation. To 
characterize the influence of unsteadiness on three-dimensional effects, Cheng (1 975) 
has identified five ranges of h for a high-aspect-ratio wing (c 4 b): 

I c 4 b 4 A ,  very low frequency ; 

I1 c 4 b = O(h), low frequency; 

111 c 4 h < b,  intermediate frequency; 

IV  c = O(h) 4 b, high frequency; 

V h Q c 4 b, very high frequency. 

Domain I corresponds to very low frequencies where quasi-steady aerodynamic 
theory is adequate. Domain V, on the other hand, corresponds to very high 
frequencies where self-averaging of the high-frequency periodic wake renders the 
problem locally two-dimensional. In domain I1 the reduced frequency based on the 
span is wb/ U = O( I ) ,  whereas in domain IV the reduced frequency based on the chord 
is wc/U = O(1). (Guiraud & Slama (1981) have developed a high-frequency unsteady 
lifting-line theory. They find that the leading three-dimensional correction is 
O(AP2 log A), which is consistent with Cheng’s conclusions.) The analysis of the 
problem in domains I1 and IV  involves two distinct regions in space, corresponding 
to lengthscales c and b, whereas the analysis of domain 111 involves three regions in 
space, corresponding to c, b and A. 

This paper is devoted to the development of an unsteady lifting-line theory valid 
in domains I and TI. The theory is formulated in terms of the acceleration potential @. 
The advantages of this formulation are that l/r is continuous everywhere except across 
the wing, and the pressure distribution on the wing is obtained directly from @. 
However, the solution is not unique, since multiples of eigensolutions with 
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FIQURE 1. (a) Schematic of the wing in unsteady motion ; ( b )  positive 
direction of pitch and heave for wing sections. 

a$/az = 0 at the wing may be added. Uniqueness is achieved by determining the 
downwash by integration of $ from far upstream to some point on the wing. 

The present lifting-line theory is developed for a wing with straight unswept 
meanline in incompressible flow. The effects of meanline sweep and curvature are 
accounted for by Murillo (1979). Compressibility effects are accounted for by Cheng 
& Meng (1980). 

2. Problem formulation 
Consider a thin, unswept, almost-planar wing of large aspect ratio, executing 

small-amplitude harmonic oscillations normal to the wing planform in a uniform 
stream of inviscid incompressible fluid with velocity U directed along the z-axis. The 
wing planform about the midchord is described by 

C ( Y  1 z =  f- 
A 

in a Cartesian coordinate system (2, y ,  z )  fixed to the mean position of the wing (see 
figure la). A is the wing aspect ratio defined as A = (2b)2/S,,  where b is the semispan 
and S, is the wing planform area. c ( y ) / A  is the semichord. Both b and c ( y )  are O(1). 

3-2 
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The transverse displacements of the wing are described by 

z = h(z,  y, t )  = -+ a ( y )  x dot P? 1 
where E,, El and E2 are the non-dimensional heave/pitch amplitudes, co/A is the root 
semichord, j is the temporal complex unit, o is the radian frequency of oscillation 
and t is time. It is assumed that w c ( y ) / U  = O(1). Equations (2.2) define a spanwise 
flexible wing executing arbitrary torsional and bending oscillations. The heaving 
motion is positive in the z-direction and the pitching motion is positive nose-down 
(see figure 1 b). 

We require that the functions h, and a satisfy the conditions of the linearized 
theory, so that 

ah ah ah - - u-1- 
ax' a y T  at ''* 

Implicit in the choice of h(z ,  y, t )  and c(y) is the fundamental assumption of lifting-line 
theory that spanwise flow perturbations are small compared with those in planes 
normal to the span. Difficulties arising from blunt wingtips are discussed in 38. 

The above problem is formulated in terms of the acceleration potential 
$(x, t )  = [p, -p(x, t ) ] / p ,  where x = (2, y, z ) ,  p is pressure, p is fluid density and p ,  
is the free-stream pressure. $ is governed by the following boundary-value problem : 

9; $(x7 t )  = 0, ( 2 . 3 ~ )  

z = 0). 

(2.3b) 

(2 .3~)  

(2.3d) 

%w> t ) + O  (IxI-t0Oo), (2.3e) 

where V: is the three-dimensional Laplacian operator, D/Dt = a/at+ Ua/ax is the 
linearized substantial derivative and Wo(x, y, t )  = Dh(x, y, t)/Dt is the linearized 
downwash at the wing. 

The solution of this problem can be expressed in terms of a distribution of pressure 
doublets over the projection of the wing planform on the (2, y)-plane (Kiissner 1941) : 

where R = [(z-[)~+ (y-q)2+z2]: and Ap = pd-pu  is the local pressure jump across 
the wing. ( ),, and ( )/ denote the upper and lower wing surfaces respectively, and (") 
denotes the complex amplitude of harmonic functions. 

To construct the asymptotic solution, we consider two simplified limits of the 
problem as A --f 00 : the outer limit and the inner limit. The outer limit corresponds 
to fixed span; as A + 00 the chord tends to zero and the wing collapses to a loaded 
line. The inner limit corresponds to fixed chord ; as A + 00 the span tends to infinity. 
The outer and inner limits are both both incomplete representations of the full 
problem, each lacking some essential features of the problem: details of the airfoil 
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in the outer limit and the three-dimensional effects in the inner limit. Matching the 
two expansions resolves this indeterminacy. However, the solution to (2.3a-e) is not 
unique, because multiples of eigensolutions with a$/& = 0 at the wing may be 
present. Uniqueness is achieved by determining the downwash by integration of $ 
from far upstream to some point on the wing. 

3. Outer solution for the acceleration potential 
Here we week an expansion for @ in the outer region (distances from the wing of 

order of span) where the wing shrinks to a loaded line as A +  GO. This is obtained 
from (2.4) by expanding R-l for small 6 and integrating across the chord. The 
three-term outer expansion is 

(3.1) 
where R, = [x2 + ( y  - q)2 + z*?, ( )" denotes the outer region, HOT denotes higher-order 
terms, r(y) = O(A-l)  is section lift, %(y) = O(A-2) ,  and 

f i ( y )  = -r(')'" [A@([, y )  d< = O ( K 2 ) ,  
-&)/A 

e ( W A  

q"(Y) = 1 t2 A m ,  Y) d5 = O(A-3) 
-ct')lA 

are respectively the first and second moments of section lift about the midchord. 6 
and q" are respectively positive in the clockwise and counterclockwise directions. It 
is seen that the outer expansion consists of spanwise distributions of multipoles along 
the loaded line. The first term consists of dipoles of strength r@), the second term 
consists of quadrupoles of strength &(y), and 80 on. The above outer expansion is 
in agreement with that of James (1975), who gives the first two terms of (3.1). 

3.1. Inner expansion of outer expansion 
The inner expansion of the outer expansion is obtained from (3.1) in the limit of 
r = (x2  + z2)i+0. In terms of the magnified (inner) variables, 5 = Ax = 4 cos 8 and 
2 = Az = 4 sin 8, the inner expansion of the three-term outer expansion is 

sin 28 
P - A2f i ( y )  - quadrupole 1 

-W(y) sin 219+O(A-~f i )  1 
I 
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where ( )' denotes derivative with respect t o  the indicated argument. The terms in 
the expansion are grouped together so as to identify the inner expansion of each term 
of the outer expansion (3.1). It is seen that the spanwise distribution of each multipole 
in the outer expansion reduces to  a two-dimensional multipole of the same order plus 
higher-order terms representing three-dimensional correction. James (1975) obtained 
the first term of the dipole and the quadrupole expansions. Except for a missing factor 
of A (apparently a misprint), his result is in agreement with (3.2). 

4. Inner solution and eigensolutions for the acceleration potential 
To determine the flow near the wing, we magnify the cross-sectional coordinates 

so that the two-dimensional airfoil character of the flow is obtained in the limit of 
A - t c ~ .  Thus 

$ = A X ,  2 =  Az. (4.1) 

I n  the boundary-value problem a t  hand, time enters in only through the boundary 
condition at the wing, which, in terms of the inner variables, is given by 

where h = Ah, and ( )i denotes the inner region. In  the inner problem A and t always 
appear in the combination At, which we will denote by E .  

We assume that, in the inner region, the acceleration potential may be expanded 
in an asymptotic series in inverse aspect ratio of the form 

@(a, E )  - &(a, €) + A - ' ~ ( 2 ,  E) + A +  log A &(2, €)+A+ @?J2, I )  + . . . ( A  + GO), 

(4.3) 
where 2 = (2, y, 2). Since physical quantitites are independent of scale in inviscid 
flows (Ashley t Landahl1965), the first term of the expression is O(1). James's (1975) 
expansion has a leading term O(A-'), which is incorrect. We include logarithmic terms 
in (4.3) because of the anticipated matching to logarithmic terms in pi, (3.2). 
Matching will show that the first two terms of (4.3) do not contain logarithms. 

Introducing (4.1)-(4.3) into the full problem we obtain a series of simplified 
problems for $hk. The lowest-order inner solution @A satisfies the following boundary- 
value problem : 

(4.4a) 

(4.4b) 
a .  D .  
- $ h ; ( n , f ) = - w o ( 2 , ~ , f )  a2 DE (121 <c(y), Iy I  < b ,  2 = O f ) ,  

l$hA(2, E )  I < 00 (2  = c(y), I y I < b ,  i = O ) ,  (4.4c) 

(4.4d) 

@A (2, t)  + ? ( B + c O ) ,  (4.4e) 

where D/DE = a/aE+ Ua/a2, B = (22+22)!, and Vi denotes the two-dimensional 
Laplacian operator. The main simplification here is the reduction of the three- 
dimensional Laplace equation to a two-dimensional one. We choose @: to satisfy the 
total downwash boundary condition a t  the wing wo to  all orders. This makes $hi the 
exact unsteady airfoil solution e2,, which is the dominant feature of the inner 
solution. The higher-order terms in then satisfy homogeneous boundary conditions 

$:(a, E )  = 0 (121 > c(y), 2 = O ) ,  
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a t  the wing surface. The loss of boundary conditions at infinity due to the stretching 
of the variables implies the presence of eigensolutions in the solution. These satisfy 
homogeneous boundary conditions, but may not vanish a t  infinity. Hence Po consists 
of e2,, and multiples of these eigensolutions. 

The boundary-value problem governing @, and e2 is 

$i?p(f,F) = 0, (4.5a) 

(4.5b) 

(4.5c) 

I@(P,f)I<co ( 2 = c ( y ) ,  l y l < b ,  2=0) ,  (4.5d) 

?+hi@, F)+ 1 (t+ co). (4.5e) 

The solution of this homogeneous boundary-value problem consists of eigensolutions 
alone. 

To determine the solution of (4.4a-e), we notice that, with the additional boundary 
condition e0(f, F) + O  as t+ 00, Po is the solution of a classical two-dimensional 
boundary-value problem. Wu (1971 a) has obtained the solution of this problem for 
arbitrary, unsteady transverse motion and variable forward speed. For steady-state 
harmonic oscillations and constant forward speed, his solution for arbitrary airfoil 
shapes and motions becomes 

a@ 
(121 < ~ ( y ) ,  I y I  < b, 2 = Ok), ao 

P(f, F) = 0 (121 > c(y), o = O),  

---(a,F) = 0 

(4.6a) 

( 4 . 6 ~ )  

(4.6d) 

2 
b,(y, F) = ; 

D 

K(2, y, F) cos n0 do, n = 0 , 1 , 2 ,  . . , , 

Wi(2,y,t) = -6(2,y,F) = +b,(y,E)+ X b,(y,F) cosn0, 

0 
a, 

Dt n - 1  
(4.69) 

where f i t [ ,  y, F) = @(f, F) + i d @  F) is the complex acceleration potential, g = 2+ i2, 
2 = c(y) cos0, i is the spatial complex unit (ij =k - l ) ,  k = ( o / U )  c(y)/A is the reduced 
frequency based on the local semichord. C( k )  is Theodorsen's function (Theodorsen 
1935) : 

where H g ) ( z )  = J,(z) - jY,(z) is the Hankel function of the second kind of order n, 
and J, and Y, are Bessel functions of, respectively, the first and second kind of order n. 
Wu's method yields the acceleration potential throughout the flow field, needed 
for the present analysis. The integrals necessary to calculate the pressure field from 
(4.6) for most wing displacements of interest are evaluated by Ahmadi (1980). 
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Using Wu's method, +iD is determined 

= Rei u i D ( c ,  Y)], ( 4 . 7 ~ )  

f :D(g,  Y) = -i iB1(y) [-5"+ (p"+Cg++')  A] 

+B2(Y) [-g+(S"-c2))tI+B3(y) [A-l]}, (4.7b) 
where Re, denotes the real part of a complex quantity with respect to i, k, is the 
reduced frequency based on root semichord co/A, and 

h =[El, ( 4 . 8 ~ )  

C 
( 4 . 8 ~ )  

B3(y) = V{ - i ( k 2 - 2 j k ) a -  

4.1. Eigensolutions of the inner acceleration potential 

The eigensolutions of the inner solution satisfy the homogeneous boundary-value 
problem (4.5a-e). We consider two cases. First, we assume +i(i?, E)+O as ?+a. The 
solution to this problem is obtained from Wu's method (for details see Ahmadi 1980), 
and is the solution of the Sears problem (Sears 1941): the interaction ofa convecting 
sinusoidal gust of constant amplitude with a flat-plate airfoil, for which ?bi/a2 = 0 
at the airfoil and @i + 00 as ?+ 00. Thus 

&ears(a) = Rei USearstt, Y ) I ~  ( 4 . 9 ~ )  
where 

Eearstt, Y) = -iupg(y) ~ ( k )  [A- 1 1 9  (4.9b) 

pg(y) is the still-unknown complex amplitude of the sinusoidal gust and S ( k )  is the 
Sears function (Sears 1941 ) 

W )  = jJ , (k)  + IJ,(k) -jJlW1 W .  
In addition to p.,,,,, there is an infinite number of eigensolutions that satisfy 

(4.5u-e) but do not vanish at  infinity. These are found by inspection: 

(4.10) 
W '  

= J i D ,  heave(a) + (2) 

(4.1 1) 

!Pi and !Pi consist respectively of the pressure field of an airfoil in heave and pitch 
of unit amplitude, together with the pressure field necessary to cancel out the 
resulting vertical acceleration at the airfoil, so that a@/a.2 = 0. Other eigensolutions 
involve oscillating airfoils with chordwise bending. We will see that to obtain the 
leading three-dimensional correction, only is required. 

The first three elements of the inner solution are thus given by 

&(n) = JiDcn) + F~"o(Y) dG, sears+jo(Y) Pi(n) +go(Y) + - * - )  (4.12) 

$:(.a) = G(Y)&,sears+f,(Y) %(R)+gk(y) Wn)+-**T k = 132. (4.13) 
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The unknown weighting functions F,, f,, g,, . .. are assumed to be 0 ( 1 )  and 

16, Sears(2) = Imi [A13 (4.14) 

where we have absorbed the multiplicative term Urg(y) S(k)  in $-sear,, (4.9u, b), into 
F,(y). Im, denotes the imaginary part of a complex quantity with respect to i. 

4.2. Expansion of inner solution for small reduced frequencies 
In the present model, since the chord is O(A-'), the reduced frequency based on the 
semichord tends to zero as A +  00. Hence the inner solution must be expanded for 
small k. In  particular, the asymptotic expansion for small k of Theodorsen's function 
is 

C ( k )  -l-v[+n-jlog(+ylv)] A-l-jvA-l logA+O(A-2 log2 A), (4.15) 

where log y1 = y = 0.57721.. . is the Euler constant and v(y) = wc(y)/U is the reduced 
frequency based on the magnified semichord c(y). The expansion of $iD for small k 
is given by 

&D(2) &D, 1(2)+A-' l o g A & ~ , , ( f ) + A - ' ~ ~ , ~ ( n ) + o ( A - ~  10g2A), ( 4 . 1 6 ~ )  
where 

JiD, ,(&I = - p a  Im, [ A ] ,  

J i D ,  z(f) = jvva Imi [A],  

gD, ,(n) = - j v v  [log (+yl v) +;jx] a +%} Im, [ A ]  +c Im, [ -g+ CP - cz):]} 

(4.16b) 

(4.16~)  
2a  

C 

(4.16d) 

is independent of k. The 

pi(.?) - (2y2-A-1joUImi[h]+O(A-a logaA), (4.17) 

{{ 
are 0(1) quantities and h is defined in ( 4 . 8 ~ ) .  

expansions for the other eigensolutions are obtained from the expansion for $iD : 
The expansion of $Lea,, is not needed, since 

~ i ( 2 )  - ( 2 ) ' 9 2 - 2 j - t - ~  W U  1m,[h]+~-llog~jv~21m,[h] 

-A-ljvU [ l o g ( ~ y l v ) + ~ j x ~ ~ m i [ j \ ~ + c  2 1m,[-~+(~-c2):]}  

(4.18) 
ja 

+O(AP2 loga A). 

4.3. Outer expansion of inner expansion 
The outer expansion of the inner expansion is obtained from the inner solution in 
the limit of ?+ 00. Thus 

(4.19b) 
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1 1 sin 8 
Ae r 

o 2  

A 
P;(.$)- - r  sin -2xpt?j~--+o(~-3) , 

(4.20) 

(4.21) 

1 c sin8 
A r  PF(2) - sin28-2joUr -2xpU2 --++(Ae2) , (4.22) 

This completes the inner solution and its outer expansion. The results of James 
(1975) €or tl.i and +io lack the eigensolutions, have not been expanded for small k, 
have an extra factor of A,  and include his induced downwash, which is incorrect. 

5. Matching 
The outer and inner solutions are matched according to the asymptotic matching 

principle of Van Dyke (1975). The principal results of a step-by-step application of 
the matching principle are given below, where m and n denote respectively the number 
of terms of the inner and outer expansions. 
m = n = l :  

f 0 W  = go(Y) = 0 . -  = 0, 
C C 

[(y) = -2xpU2-a+2xp-F0(y) .  
A A 

m =  l , n = 2 :  

A t  this level, section lift is the same as in (5.1), and 

m = n = 2 :  

fl(Y) = Sl(Y) = .'. = 07 

A 
C 

C C 
[(y) = -2xpU2-a+2~p-F0(y)+ A-' log A 

A A 

+ A-l{ - 2xp u2 j v {[log (+y v) + ijx + 1 ] a + 0 - + 2xp - Fl(y)} ; (5.3) 
h } c  c A  A 

the section moment is the same as in (5.2). 

m = 2, n = 3: 

Here the section lift is the same as in (5.3), and 

q'(y) = -xpU2 - a + x p  - Po@). (3" (3 (5.5) 
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The above results show that to O(A-2) the solution for the acceleration potential 
contains no eigensolutions except possibly To leading order, the section lift 
and moment consist of their two-dimensional quasi-steady values, As the matching 
proceeds to higher orders, sectional loads are refined with two-dimensional unsteady 
information and possible contributions from We will see that the latter 
contain the leading three-dimensional correction. 

We now construct the composition solution 

$, = p+p-pi, (5-6) 

where $Oi = is the common solution. To O(A-2), $, is given by 

$'(a) - &D, 1(2) + p o ( ~ )  &,Sears($) 

+ A-' log A J h ,  ,(a) + A-' t J L ,  s(2)  + F ~ ( Y )  J:, sears(9)I. ( 5 . 7 a )  

Using (4.16), we may rewrite this as 

$33) = G h ( 2 )  + [ F ~ ( Y )  + A-' log A F ~ ( Y ) I  Gi, Sears($) (5 .7b)  

without altering its accuracy. Using (5.7 b) will greatly facilitate downwash calculation 
in $6. Furthermore, to O(A+), 

where ao(y) = -21cpW(c/A) a is the two-dimensional quasi-steady section lift. The 
above solution is not unique, since i t  contains multiples of the eigensolution 
as indicated by the unknown weighting functions F,(y).  

6.  Uniqueness 
Uniqueness of the solution is achieved by calculating the downwash by integration 

of the composite pressure field from far upstream to some point on the wing. 
Downwash at a field point x is given by 

q(x) = 'r [ J " ( E ,  y ,  z ) ]  elG([-%) dt, (6.1) u -,a% 
where ij = w / U .  For points on the wing, the integration path passes over (or under) 
the leading edge, where the vertical acceleration of a fluid particle 

has a non-integrable singularity. First we calculate the downwash a t  the wing due 
to (which contains the singularity) and denote it by w'. 

6.1. Calculation of w'(x,  y ,  z, t )  at the wing 

We begin by inverting the linearized Euler equation, written for the cross-sectional 
plane of the wing in complex form, 
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to obtain the complex velocity g'(t, y, €) = u'(2, €) -id@, €) : 

A .  R.  A h d i  and S .  E .  Widnull 

We resolve the difficulty at the leading edge by considering the general caae 6 9 0, 
integrating by parts, and thereafter letting 2 - t O f .  Since downwash is an even 
function of 6, it  suffices to consider 2+0 + only. The downwash a t  the wing thus 
becomes 

W(z,y ,o+)  = - I m , ~ ( z + i ~ + , y ) ]  
-1 
U 

where we have made use of the fact that f i  + O  as 5-t 00 (see below). 
To O(A-2) ,  f' consists Of&, andf,',Sesrs, where the latter is the complex form of  sears obtained from (4.9b) after removing the factor U p g ( y )  S(k). Since both&, 

and f6,Sears are two-dimensional, they vanish as ++a. It can be shown that 
substitutingf:, into (6.4) yields the prescribed downwash at the wing, as expected. 
Similarly, the downwash at the wing due to f:, Sears, say W,, Sears, is found to be 

2u 
R,sesrs(fi,y,O+) = -k e- jzz[Hp)(k)+jH$2)(k)]  

-1 ._ 
U 

- - e-JWz[l + O(A-' log A ) ] .  (6.5) 

Substituting the above results for W, for points on the wing in (6.1) and setting 
the computed downwash equal to the prescribed value W,, we obtain 

1 w M  = w M - 8  e-Jwz [F,(y) + A-lF1(y)] 

+ lim [ mo(x,  y, 2)- mo'(z, y, z ) ]  e-jwz ( I  z I < c ( y ) / A  , I y I < b ) ,  (6.6) 
z+o+  

where 

are respectively the downwash velocities due to the outer and common solutions. In  
(6.6) the downwash velocity due to PzD identically cancels with the prescribed 
downwash at the wing, since all of the wing boundary condition was used to determine 
the lowest-order inner solution $:. 

We now consider the balance of the two remaining terms in (6.6). After cancelling 
the common sinusoidal dependence on z, we conclude that, since the first term is 
independent of x, the second term must be also. Hence we need to evaluate the second 
term for only one value of x: for convenience, z = 0. In the limit of z+O+ , m o ( O ,  y, z )  
is the downwash due to $O near the loaded line and q o i ( O ,  y, z )  is the downwash due 
to pi near the two-dimensional dipole of strength ro(y). All that remains to determine 
F,, Fl and F, is to determine limz,,+ [ po(O, y, z )  - po'(O, y, z ) ] .  
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6.2. Calculation of Wo(O, y, z, t)  as z+O+ 

m o ( O ,  y, z )  is obtained by substituting (5.8) into (6.7) : 

The expression in the braces is the kernel function of unsteady lifting-surface theory 
for incompressible flow, arbitrary z, and xo = 0, i.e. K(xo = 0, yo, z) in the standard 
notation (xo = 2-6, yo = y-7). K(zo,  yo, z)  can be evaluated in terms of special 
functions (for arbitrary z, see Widnall 1964). For zo = 0, 

i3 

rl 
K(O,y0, 2) = --{K,(Gr,)+ijx ~ I l ( ~ ~ , ) - L l ( W 1 - j l  

- T b 2 ( G r l ) - i j x  G2Z2 [12(7sr , ) -L2(Gr,)]+~j  

where rl = (y: + z2)i, and I,, K ,  and L, are respectively modified Bessel functions of 
the first and second kind of order n and the modified Struve function of order n. For 
computational purposes, it  is often inconvenient to evaluate I ,  and L, separately, 
but their difference are neatly expressible by formulas like 

I ,  - L, can also be evaluated from a closed-form approximation given by Watkins, 
Woolston & Cunningham (1959). 

To understand the nature of the singularities of K(0, yo, z )  and mo(O,  y, z) as z+O+ , 
we adopt the vortex viewpoint where the outer solution is a harmonically oscillating 
concentrated vortex accompanied by a wake of trailing and shed vorticity. The 
contribution of the trailing vorticity to downwash at the loaded line is finite and 
involves the classical second-order singularity of wing theory (in K) in the spanwise 
direction (Watkins et al. 1959). The contribution of the shed vorticity involves a 
logarithmic singularity, an idea familiar from lifting-surface theory. 

Formally, we substitute (6.10) into (6.9) and derive an expansion for the integral 
in the limit of z+O+ (see Ahmadi 1980): 

+ 0 ( z 2  log 2) (I y I < b), (6.11 a) 

where # denotes the principal value of the integral in the sense of Hadamard (see 
Mangler 1951) and 

-W = AK,@)+ijx [11b4)-L1@)11. (6.11b) 

The unsteady induced downwash of James (1975) is closely related to m o ( O ,  y, z). 
The real and imaginary parts of ,X are shown in figure 2. 
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FIGURE 2. The real and imaginary parts of the kernel function of unsteady 
lifting-line theory Z(p) = ZR(p) + jZI(,u). 

I n  the present notation, his result is given by 

where 

( 6 . 1 2 ~ )  

is essentially the first term (the first pair of braces) of K(0,  yo, z ) ,  (6.10). However, 
his integral does not have a finite value because it contains a non-removable logarith- 
mic singularity (arising from the -jy term in C) and hence is infinite. This 
singularity is removed in the present formulation. 

6.3. Calculation of Woi(x, y, z, t )  as z + O  + 
From the vortex viewpoint, woi(O, y, z )  is the self-induceddownwash at a harmonically 
oscillating two-dimensional vortex accompanied by a wake of shed vorticity. It too 
contains a logarithnmic singularity due to the presence of the shed vorticity. 
Woi(O, y, z )  is obtained from (5.9) and (6 .8)  : 

(6.13) 

The expression in the braces is the kernel function of unsteady airfoil theory for 
incompressible flow, arbitrary z ,  and z0 = 0, i.e KzD(z0 = 0, z). KzD(xo,z) can be 
evaluated in terms of special functions (see Ahmadi 1980): 

-X 
KzD(zo, z )  = L+ ijrj c-*~ Ei (q l )  +e-*z 

x;+ 22 

where q1 = W(-z+jjz,), qz = W(z+jz,), 

and Ei (6) is the complex exponential integral 
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defined with a branch cut along the positive real axis. Setting xo = 0 and expanding 
for z + 0 + (the necessary expansions are found in Erd6lyi 1953 ; Grobner & Hofreiter 
1961), we obtain 

(6.15) 

We notice that the logarithmic term in z in woi(O,y,z) is identically equal to that 
in wo(O, y, z) ,  as expected. 

It follows from (6.11~) and (6.15) that 

lim [W(O, y, 2)- P ( O ,  y, 211 
z+o+ 

where po = 6% is the reduced frequency based on semispan. Using (6.16) in (6.6), and 
recalling that F,(y) = 0(1), we find 

Fo(Y) = 0, 

Fl(y) = UA lim [ m o ( O ,  y, 2 ) -  moi(O,y, z ) ]  = O(1). 
z+o+ 

This completes the analysis to O(A-2). The Fl term in the solution represents the 
leading three-dimensional correction, which is of relative order O(A-'). 

In  summary, the pressure field is given by (5.6)-(5.9), and the section lift and 
moment are given respectively by (5.3) and (5.4). The matching results show that, 
in the MAE analysis, the pressure field and airloads first take on their two-dimensional 
quasi-steady values. As the analysis is carried out to higher orders, they are 
increasingly refined with two- and three-dimensional unsteady information. It is seen 
that, for low reduced frequencies, unsteady three-dimensional effects come in at the 
same order as steady three-dimensional effects. The present analysis is asymptotic 
for large aspect ratio and small reduced frequency ; the results are expected ultimately 
to diverge with increasing reduced frequency and decreasing aspect ratio. 

7. Unsteady induced downwash 
Now, we identify unsteady induced downwash, because it contains all of the 

three-dimensional unsteady effects. We return to (6.6), which equates the downwash, 
computed from integration of the composite pressure field, with the prescribed 
downwash at the wing. &> and Fl are given by (6.17). The first term on the right-hand 
side of (6.6) is the downwash at the wing due to the two-dimensional solution $iD, 
which equals the prescribed downwash and is cancelled by the left-hand side. The 
second term is the downwash at the wing due to the local modification of 
the inner solution arising in response to the induced downwash. The third term on 
the right-hand side is the downwash at the wing due to the outer solution minus the 
common solution. 

Therefore the last term on the right-hand side of (6.6) is the unsteady induced 
downwash itself. This term, apart from the common sinusoidal dependence on x, is 
independent of x. Hence x can be set equal to any constant value on the wing; we 
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FIGURE 3. Interpretation of unsteady induced downwash (afkr Van Holten 1976). 

choose x = 0. Therefore the upper limits of the integrals in (6.7) and (6.8) become 
zero. The unsteady induced downwash WI is then given by 

WI(z, y, t )  = Vg(y) e-jwz ejwt (1x1 < 7,  C ( Y  1 Iyl < b),  ( 7 . 1 ~ )  

where 

Jqg(Y) = lim [V0(0, Y, 4 - J q O ' ( 0 ,  Y, 4 1  
z+o+ 

= O(A-1) (7.lb) 

is given by (6.16). Since for points on the wing x = O(A-l) ,  to leading order, (7 . la )  

C ( Y )  ( 7 . 1 ~ )  
reduces to 

WI(2, Y, t )  = Wg(Y) ejwt (1x1 G A 9 IYI < b )  9 

which is constant across the chord, as in the steady case. 

7.1. Interpretation of induced downwash 

According to (7.1 b, c), to leading order, unsteady induced downwash at a spanwise 
station is made up of the downwash due to vortex system I, Vo(O, y, O +  ), and that 
due to vortex system 11, moi(O, y, 0 + ), as shown in figure 3. Vortex system I is the 
outer solution : a harmonically oscillating loaded line of strength T(y), accompanied 
by a wake of trailing and shed vorticity. Vortex system I1 is the common solution: 
a harmonically oscillating two-dimensional vortex of strength r(y), accompanied by 
a wake of shed vorticity. The downwash due to both vortex systems is logarithmically 
infinite, but their difference, which is the unsteady induced downwash, is finite. 

This interpretation of induced downwash was first given by Van Holten (1976). 
However, as cited earlier, he incorrectly assumed constant induced downwash across 
the chord for arbitrary reduced frequency. 

This also resolves the main error in the unsteady lifting-line theory of James (1975). 
As pointed out earlier, his induced downwash is essentially ro(O, y, 0 + ), and likewise 
is logarithmically infinite. In the present theory, induced downwash is inferred from 
the completed solution, a posteriori. James, on the other hand, intuitively defined WI 
on the basis of the outer solution alone and used it as the means for connecting the 
inner and outer solution. 
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FIGURE 4. Interpretation of steady induced downwash (after Van Holten 1976). 

The steady induced downwash is similar to the unsteady one except that the shed 
vorticity is absent from both vortex systems I and 11, as shown in figure 4. Since 
moi(O, y, 0+)  is entirely due to unsteady effects, it vanishes in the steady-flow limit. 
Hence steady induced downwash is entirely due to the trailing vorticity of system I 
(Prandtl’s result). 

We can express the results of the present theory directly in terms of unsteady 
induced downwash by expressing F1(y) in terms of W,. Substituting (7.1 b, c) into 
(6.17), we obtain 

where mI(y)/U may be thought of as the unsteady induced angle of attack, which 
varies harmonically with time. 

7.2. An improvement 
The present asymptotic analysis involves a number of exact solutions from unsteady 
airfoil theory which have been expanded for small reduced frequency or large aspect 
ratio, with only the first few terms retained to the order of the asymptotic analysis. 
However, we propose replacing these asymptotic expansions with their exact 
functional forms, which are valid to at least the order of the corresponding asymptotic 
expression. This is expected to improve the numerical accuracy of the results over 
an expanded frequency range. 

For k+O the induced downwash is constant across the chord. However, to increase 
the accuracy of the unsteady induced downwash for finite k, we will restore the 
sinusoidal dependence on x and replace the quasi-steady strip-theory section lift I?&) 
with its exact unsteady counterpart &,(y). The improved unsteady induced down- 
wash is then given by 

where mg(y) is given by (6.16) with &(y) replaced by &,,(y). 
It is seen that the three-dimensional effects at each wing section are manifested 

as a sinusoidal gust convecting with the free stream, whose complex amplitude mg(y) 
varies across the span in a manner determined by wing shapes and motions. We refer 
to W, as the induced gust. The three-dimensional correction to the basic two- 
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dimensional inner solution is then the pressure field due to the interaction of this 
induced gust with the wing sections : 

P(2) = J i D ( 2 )  + Gkears(2). (7-4) 

Consequently, the improved three-dimensional section lift and moment consist of the 
two-dimensional unsteady quantities plus those due to  piears, i.e. 

eiu) = [2D(y) + rSears(Y), = fi2D(!4) + *Sears(y). (7.5) 

The improved form of the outer solution and the common solution are obtained 
respectively from (5.8) and (5.9) after replacing ro(y) by rZD(y). 

are determined by integrating the wing pressure distribution 
A@ZD(X, y) =p[&,(?., y, O + ) - ~ D ( ? ,  y, 0-)], obtained from (4.7a, b). Thus 

rZD and 

which are the familiar results for an airfoil in combined pitch and heave. Similarly, 
lsears and ljiSears are obtained from (4.9a, b )  : 

ljise,,,(y) = npV (;pp S ( k ) .  (7.9) 

I n  the limit of steady flow, the present theory reproduces the results of the steady 
lifting-line theory of Van Dyke (1963). In  the remainder of this work, we will use the 
above extended version of the present theory. 

8. Numerical examples and region of validity 
Numerical methods have been developed to calculate unsteady induced downwash 

and sectional and total lift and moment coefficients for oscillating rigid wings. A few 
examples are presented below. Numerous examples showing the influence of reduced 
frequency, aspect ratio, wing planform shape and mode of oscillation on the 
aerodynamics of the wing are given in Ahmadi (1980). They show that, within the 
region of validity of the theory, with increasing reduced frequency and/or aspect 
ratio, the three-dimensional results approach their strip-theory counterparts, as 
expected. 

The following examples are for a rigid elliptic wing oscillating in pitch and heave 
and the extended version of the present theory. The accuracy of the numerical results 
is three decimal places or better. Without loss of generality, semispan length is taken 
to  be unity. 

Figure 5 shows the spanwise distribution of amplitude and phase of the complex 
amplitude of unsteady induced downwash r& for an elliptic wing in pitch for several 
values of reduced frequency k,. The wing motion is described by h(x, y, t )  = 6, x eJwt, 
w&(y*) = pg(y)/Utl; and y* = y / b .  The station closest to  the tip where calculations 
have been carried out is y* = 0.999. We see that, for spanwise stations not very close 
to  the tip, the amplitude of induced downwash diminishes with increasing reduced 
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frequency, as expected. In  a small neighbourhood of the tip, however, with increasing 
k,, the amplitude of induced downwash becomes more intense (becoming possibly 
infinite at the tip, y* = 1). The latter is due to the increase in the strength of local 
wake vorticity near the blunt tip which grows stronger with increasing k,. 

Figure 6 shows the total lift and moment coefficients for an elliptic wing in heave, 
as complex vector diagrams for a range of values of k,. Figure 7 shows the same results 
for an elliptic wing in pitch about the midchord line. The heaving motion is described 
by h(z,  y, t )  = i(c,/A) go eJWt and 

where ( )H and ( )p denote heave and pitch respectively, and $jkot0 is the negative 
of the angle due to the heaving motion. Shown are the unsteady strip-theory results, 
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FIGURE 6. Complex vector diagram of -CLH and -CFH as functions of k, for an elliptic wing in 
heave ( A  = 16); R and Z respectively denote real and imaginary parts of the coefficients; -0-, 
strip theory; -0-, unsteady lifting-line theory; 0,  steady lifting-surface theory. 

results of the present unsteady lifting-line theory, and the lift coefficient from steady 
lifting-surface theory. Unfortunately, no unsteady lifting-surface calculations for an 
oscillating elliptic wing are presently available. We see that, in the limit of steady 
flow, agreement with steady lifting-surface results is quite good. Furthermore, with 
increasing k,, the three-dimensional results approach their strip-theory values, as 
expected. Beyond k, x 0.5, however, this trend gradually reverses owing to the 
aforementioned divergence of the present theory a t  higher reduced frequencies. It is 
noteworthy that, beyond k, x 0.5, strip-theory results are quite adequate. 

The lifting-line assumption that spanwise flow perturbations are small compared 
with those in planes normal to the span is violated near blunt wingtips, where the 
flow does not become two-dimensional no matter how large the aspect ratio. This gives 
rise to local regions of nonuniformity near the tips, the size of which is larger for 
blunter tips. The non-uniformities can be corrected by constructing additional 
asymptotic expansions valid in the immediate vicinity of the tips and matching them 
to the inner solution. 

In steady flow, starting with the exact solution of Kinner (1937) for a circular wing, 
Jordan (197 1 a, b) carried out a detailed study of the flow field near a circular (or 
parabolic) wingtip. He found that, contrary to the classical assumption of (essentially) 
elliptic span loading, the actual loading contains a logarithmic term near the tip. As 
a consequence, the induced downwash contains a logarithmic singularity, which gives 
rise to an infinite upwash at the tip. Also, in relation to an oscillating rectangular 
wingtip, Landahl (1968) found a similar logarithmic term in the span-loading. It 
might be possible to derive similar results for an oscillating circular (or parabolic) 



Unsteady lifting-line theory 79 

I 

R 

-1.0 L 
FIGURE 7. Complex vector diagram of - cLp and - cMP as functions of k, for an 

elliptic wing in pitch ( A  = 16): for legend see figure 6. 

wingtip, using the exact solution of Schade & Krienes (1947) for an oscillating circular 
wing. Presumably, similar logarithmic terms in the span-loading and induced 
downwash would be uncovered. 

For the present theory, the numerical results of Ahmadi (1980) for a family of wing 
planforms indicate that for elliptic and more slender planforms, the theory yields 
convergent total aerodynamic coefficients. We expect that for wings with blunter tips, 
such as the rectangular one, non-integrable singularities will show up at the tips. 

9. Concluding remarks 
Unsteady lifting-line theory has been developed for a wing that is completely 

flexible in the span direction. Wing displacements are prescribed, and the pressure 
throughout the flow field is determined in closed form to leading order in inverse 
aspect ratio. It is found that three-dimensional effects are manifested in the form of 
a convecting sinusoidal gust whose complex amplitude, to leading order, is a constant 
across the chord but varies across the span in a manner determined by the wing shape 
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and motion. Compared with numerical lifting-surface theory, the theory reduces 
computation time significantly. 

Using the present theory, Ahmadi & Widnall (1983) determined the influence of 
three-dimensionality on the energetic quantities - thrust, energy loss rate due to 
vortex shedding in the wake, power required to sustain the wing oscillations, and 
leading-edge suction force - for a finite wing oscillating in combined pitch and heave. 
Using these results, Ahmadi & Widnall have also determined the optimum motion 
of the wing - the motion which minimizes the energy loss rate for fixed prescribed 
total thrust. This is the three-dimensional counterpart of Wu’s (1971 b) study of the 
optimum motion of an airfoil in pitch and heave. 

This work was sponsored in part by NASA Grant NGR 22-009-818. This support 
is gratefully acknowledged. 

R E F E R E N C E S  

AHMADI, A. R. 1980 An asymptotic unsteady lifting-line theory with energetics and optimum 
motion ofthrust-producingliftingsurfaces. Ph.D. thesis, MIT, also as NASA CR-165679 (1981). 

AHMADI, A. R. & WIDNALL, S. E. 1983 Energetics and optimum motion of oscillating lifting 
surfaces. A I A A  Paper 83-1710, presented at AZAA 16th Fluid and Plasma Dynamics Conj., 
Danvers, MA,  July. 

ASHLEY, H. & LANnAHL, M. T. 1965 Aerodynamics of wings and Bodies. Addison-Wesley. 
CHENQ, H.  K. 1975 On lifting-line theory in unsteady aerodynamics. In Unsteady Aerodynamics: 

Proc. Symp. at University of Arizona, 18-20 March (ed. R. B. Kinney), pp. 719-739. 
CHENG, H. K. & MENQ, S. Y. 1980 The oblique wing as a lifting-line problem in transonic flow. 

J .  Fluid Mech. 97, 531-556. 
CHENG, H. K. & MURILLO, L. E. 1984 Lunate-tail swimmming propulsion aa a problem of curved 

lifting line in unsteady flow. Part 1. Asymptotic theory. J .  Fluid Mech. 143, 327-350. 
ERDELYI, A. (ed.) 1953 Higher Transcendental Functions. Bateman Manuscript Project, vol. 11, 

McGraw Hill. 
GROBNER, W. & HOFREITER, N. 1961 Zntegraltafel, Zweiter Teil, Bestimmte Integrale. Springer. 
GUIRAUD, J. P. & SLAMA, G. 1981 Lifting line asymptotic theory in incompressible oscillating flow. 

JAMES, E. C. 1975 Lifting-line theory for an unsteady wing as a singular perturbation problem. 

JORDAN, P. F. 1971a The parabolic wing tip in subsonic flow. AIAA Paper 71-10. 
JORDAN,  P. F. 1971 b Span loading and formation of wake. In Aircraft Wake Turbulence and It8 

KINNER, W. 1937 Die kreisformige Tragfliiche auf potentialtheoretischer Grundlage. Zng. Archiv. 

KUSSNER, H. G. 1941 General airfoil theory. NACA T M  979. 
LANDAHL, M. T. 1968 Pressure loading functions for oscillating wings with control surfaces. AZAA 

J .  6 ,  345-348. 
MANGLER, K. W. 1951 Improper integrals in theoretical aerodynamics. ARC R&M 2424. 
MURILLO, I,. E. 1979 Hydromechanical performance of lunate tails analyzed as a lifting-line 

REISSNER, E. 1944 On the general theory of thin airfoils for nonuniform motion. NACA TM 946. 
SCHADE, T. & KRIENES, K. 1947 The oscillating circular airfoil on the basis of potential theory. 

NACA T M  1098. 
SEARS, W. R. 1941 Some aspects of non-stationary airfoil theory and its practical application. 

J. Aero. Sci. 8 ,  104-108. 

Rech. Aerospat. 1. 

J .  Fluid Mech. 70, 753-771. 

Detection (ed. J.  H.  OIsen, A. Goldberg & M. Rogers), pp. 207-227. Plenum. 

8, 47-80. 

problem in unsteady flow. Ph.D. thesis, USC. 



Unsteady lifting-line theory 81 

THEODORSEN, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. 
NACA T R  496. 

VAN DYKE, M. 1963 Lifting-line theory as a singular-perturbation problem. SUDAER 165 
(August). 

VAN DYKE, M. 1975 Perturbaticm Methods in Fluid Mechanics, annotated edn. Parabolic. 
VAN HOLTEN, T. 1975 The computation of aerodynamic loads on helicopter blades in forward 

flight, using the method of the acceleration potential. Delft Univ. Tech., Dept Aerosp. E n p g  
Rep. VTH-189. 

VAN HOLTEN, T. 1976 Some notes on unsteady lifting-line theory. J. Fluid Mech. 77,561-579. 
VAN HOLTEN, T. 1977 On the validity of lifting line concepts in rotor analysis. Vertica 1,239-254. 
WATKINS, C .  E., WOOLSTON, D. S. &. CUNNINQHAM, H. J. 1959 A systematic kernel function 

procedure for determining aerodynamic forces on oscillating or steady finite wings at subsonic 

WIDNALL, S. E. 1964 Unsteady loads on hydrofoils including free surface effects and cavitation. 
Sc.D. thesis, MIT. 

Wu, T. Y. 1971 a Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimensional 
flexible plate at variable forward speed in an inviscid fluid. J. Fluid Mech. 46, 337-355. 

Wu, T. Y. 1971 b Hydrodynamics of swimming propulsion. Part 2. Some optimum shape problems. 
J .  Fluid Mech. 46, 521-544. 

speeds. N A S A  TR R-48. 




